Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 295, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208471

RESUMO

Odorant binding proteins (OBPs) are extra-cellular proteins that solubilize and transport volatile organic compounds (VOCs). Thousands of OBPs have been identified through genome sequencing, and hundreds have been characterized by fluorescence ligand binding assays in individual studies. There is a limited understanding of the comparative structure-function relations of OBPs, primarily due to a lack of a centralized database that relates OBP binding affinity and structure. Combining 181 functional studies containing 382 unique OBPs from 91 insect species, we present a database, iOBPdb, of OBP binding affinities for 622 individual VOC targets. This initial database provides powerful search and associative capabilities for retrieving and analyzing OBP-VOC binding interaction data. We have validated this dataset using phylogenetic mapping to determine the authenticity of the collected sequences and whether they cluster according to their assigned subfamilies. Potential applications include developing molecular probes for biosensors, novel bioassays and drugs, targeted pesticides that inhibit VOC/OBP interactions, and understanding odor sensing and perception in the brain.


Assuntos
Insetos , Receptores Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes , Filogenia , Receptores Odorantes/genética
2.
Biosens Bioelectron ; 229: 115237, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965380

RESUMO

Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.


Assuntos
Técnicas Biossensoriais , COVID-19 , Compostos Orgânicos Voláteis , Humanos , COVID-19/diagnóstico , Compostos Orgânicos Voláteis/química , Exposição Ambiental , Ressonância de Plasmônio de Superfície , Testes Respiratórios/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...